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Improved Quasi-TEM Spectral Domain Analysis Of
Boxed Coplanar Multiconductor Microstrip Lines

Enrique Drake, Francisco Medina, Member, IEEE, and Manuel Horno, Member, IEEE

Abstract— This paper presents a very efficient quasi-TEM
analysis of multistrip transmission systems embedded in a layered
medium. The number of conductors and substrates is arbitrary,
and the whole structure is assumed to be enclosed in a rectan-
gular set of boundary conditions. The analysis makes use of the
Galerkin method in the spectral domain. Chebyshev polynomials
with edge conditions are used as basis and test functions for
the strips free charge distribution. This standard technique is
considerably enhanced by means of two alternative procedures to
accelerate the computation of the entries of the Galerkin matrix.
Extremely accurate results for a multistrip system, including the
charge distribution, can then be obtained on a PC computer in
a short CPU time.

1. INTRODUCTION

ULTICONDUCTOR TRANSMISSION LINES (MTL)

are widely used in (monolithic) microwave integrated
circuits, high speed interconnecting buses and other applica-
tions. Once the propagation characteristics of a MTL system
are known, its frequency domain or time domain electrical
responses can be obtained by means of well known methods.
The propagation parameters have been computed by means of
both quasi-TEM and full-wave approaches. In many practical
situations the quasi-TEM analysis provides results which are
accurate enough, and in these cases it is prefered to the
much more computationally involved full-wave approach. In
addition, quasi-TEM data can be used as an initial guess in
full-wave algorithms, thus improving their efficiency.

If quasi-TEM operation is assumed, the propagation param-
eters are computed from the capacitance, [C], and inductance,
[L], per unit length (p.u.l) matrices of the MTL. Powerful
methods have been reported in the literature to compute [C]
and [L] for multiconductor systems having arbitrary geometry
[1]-[3] or planar geometry [4], [5]. Specific techniques have
also been developed for microstrip geometries, which result
in particularly efficient computer algorithms. For instance,
some multiconductor structures can be exactly solved by using
conformal mapping (6], [7] or very efficiently handled by
means of the integral equation technique [8]. For the general
microstrip-like geometry embedded in a layered linear medium
(see Fig.1) the spectral domain approach (SDA) - combined
with the Galerkin method [9, 10], variational formulation [11],
[12] or iterative techniques [13], [14] - is probably the most
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Fig. 1. Cross section of the generalized boxed coplanar multistrip line under

study.

simple and widely used tool. Although the direct application
of these techniques gives place to accurate, reliable and quick
computer codes, proper analytical preprocessing drastically
improves their performance. A variety of techniques involving
heavy analytical work has been applied to the solution of the
single microstrip problem (see [15] and the references therein).

The present paper is a meaningful extension of the work in
[15] which deals with multistrip geometries having arbitrary
strip widths. The technique is essentially an enhanced spectral
domain analysis. Two efficient schemes are provided to ac-
celerate the computation of the spectral series involved in the
Galerkin matrix in a drastical way. The application of these
techniques makes it possible to compute the characteristic
parameters of the microstrip MTL in Fig. 1 with high accuracy
in a short CPU time. The charge distribution is simultaneously
obtained with extreme accuracy. The analysis of a typical
multistrip system can be carried out on a PC/AT computer
with math Coprocessor in no more than one or two seconds.
The developed programs can be used for CAD applications
on a workstation. This software could be useful for engineers
dealing with multistrip geometries.

II. STATEMENT OF THE PROBLEM

The cross section of the microstrip-like system considered
in this work is shown in Fig. 1. Translational symmetry
in the z direction is assumed. An arbitrary number, N, of
zero-thickness perfectly conducting strips are placed on the
Mith interface of a Nj-layered medium. The ith strip is
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characterized by its width, w,, and the position, s;, of its
middle point. The layered substrate is composed of N; slabs
of lossless/lossy/iso/anisotropic linear materials. The jth layer
is characterized by its complex dielectric permittivity tensor,
€,, (or equivalent permittivity tensor [10]). The structure is
enclosed into a rectangular frame bounded by the planes
z =0,z =a,y = 0,y = b (see Fig. 1). A wide family of
coplanar microstrip-like transmission lines can be considered
to be a particular case of this generic structure.

As it is well known, all the quasi-TEM parameters of the
MTL system can be obtained from its capacitance, {C’], and
inductance, [L], p.u.l. matrices. Usually [L] is computed from
the capacitance p.u.l. matrix, [C'], of a proper related structure
[10]. Then, the quasi-TEM analysis reduces to solving two
electrostatic-type bidimensional problems. Each coefficient
Cy, (1,7 =1,...,N) of [C] or [C"] can be defined as the free
charge on the ith strip when the jth strip is set to voltage unity
and the rest of the strips are grounded (canonical excitation).
Therefore the computation of [C] (or [C']) requires to solve the
free charge density integral equation N times (for IV canonical
excitations):

N ra
Z/ G(z,2")o,(z")ds’ = ®(x) = € strips (1)
0

where G(x,z') is the static Green’s function, ®(z) is the
voltage (one or zero on each strip depending on the particular
excitation), and o,(z’) is the free charge density on the jth
strip.

No general closed form expressions are known for the spa-
tial domain Green’s function of our problem, but the spectral
domain Green’s function (SDGF) can be casily computed (see.
for instance, [11], [10]) for an arbitrary layered configuration.
According to this, it is more convenient to work with (1) in
the spectral domain. A useful technique to solve the spectral
domain version of (1) is the Galerkin method. As it has
been established in the literature on this subject, Chebyshev
polynomials weighed by the Maxwell edge singularity are
particularly suitable test and basis functions for the strips free
charge density. When these functions are used o;(z') can be
written as follows:

Gmax,

Z g,304,5(2") @

where
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The application of the Galerkin method leads to a system
of algebraic linear equations for ag;. The entries A2} (p =
0,...sPmax.; 4 = 0, .., Ginax, 1805 = 1, N)ofthlssystem

are the following spectral series:

q] = Z& z(an On) - Og,5(0tn) “

where «,, = nn/a is the Fourier variable, G is the SDGEF, and
Gq,j(n) are the sine-Fourier transforms of the basis functions
in (3):
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. Jo{ L) (~1)9? sin(ans,) if g is even
Gq(0n)= Wy (a-1)/2 o

Jq(T)(—l) =D/2 cos(ans,) if ¢ is odd
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where J, is the first kind of Bessel function of order g.

The sum of the series in (4) is the computational step in-
volving meaningful CPU time cost. Therefore, the construction
of a highly efficient computer code requires the analytical
preprocessing of those series. Kummer’s method (extraction
of an asymptotic tail) is used in order to accelerate the
convergence of the series. According to this method, the series
(4) are split as follows:
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er (k = M, M + 1) being the permittivity (or the equivalent
permittivity [11], [10] in the anisotropic case) of the kth layer.
Since G, is chosen to be the asymptotic behavior of G for
large o, the remainder series (first term of (6)) converges
very quickly. The asymptotic tails Sz;f are extremely slow
convergent series, but they can be reduced to quasi-analytical
expressions by means of the two procedures described in the
two following sections.

I1I. TRANSFORMATION OF THE TAILS INTO POWER SERIES

It can be seen from (5) and (7) that the computation of Sg;g'
involves the addition of slowly convergent trigonometrical
series of the following kind:

= Jp(nd,)J (nd,)
> (nd,)

q.J\ —
(Sp’l) - n
n=1

. {COS (ncij;)

sin (nc;)

if p+ g even

if p+ ¢ odd ®)

where d, = 7w, /2a and ci = (w/a)(s; £ ;).

The residues calculus technique makes it possible to trans-
form (8) into much more quickly convergent power series. The
first step is to identify (8) as the addition of the infinite residues
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of the following properly chosen complex-plane function:

Jp(zd,)Jy(2d,) exp (jzci)
zlexp (j2mz) — 1]

(=)= p+tg=1 (9

When (9) is integrated along the closed path shown in
Fig. 2, the residues Cauchy theorem provides an alternative
expression for (S77)":

gty = {0 ) [ g o
==y g ysinh (my)
cosh [(m — Ci)y]; p -+ g even |
{ sinh [(7 ~ ci)y]; p+ ¢ odd (10)

Now. the product of modified Bessel functions I, I, is ex-
panded as a series of powers [[16], p. 960] shown in (11)
below. F being the hypergeometric function, and I' being the
gamma function. The hypergeometric function F[—k.—p —
k;q+1;(d,/d,)?) is a k-degree polynomial in (d,/d,)* shown
in (12) below.

In addition, the integrals appearing in (11) are known in
closed form. Two alternative expressions [[16], pp. 349350}

for them are:
/DO dy—2—— y#_l COSh(,@y)
o sinh(m Y) sinh(By)

-1

1 d¢
dﬂ 7 tan (4/2)
I'(s

{c[u L2 21

where f = p+qg+2k.f =7 — (*l]. and ( is the Riemann's
zeta function. The first expression in (13) is used for the first
few terms of the k-series. This suffices for most cases, but if

)

(2m )~

Jy

z—plane

Fig. 2. Integration path n the complex plane for the computation of the

spectral series by means of the residues calculus technique.

larger values of %k are needed, the second expression in (13)
provides an alternative quick solution.

This procedure is still valid in the case p4q = 1 because the
new pole of f(z) in z = 0 presents a purely imaginary residue.
However, the case p = g = 0 requires a separate treatment
because of the double pole of f(z) in z = 0. Let us consider:

d(S57Y

ik =" Jo(nd,)Jo(nd, ) sin (ncif)

n=1

(14)

This auxiliary series can be computed by means of the
technique explained above when f(z) in (9) is replaced by
g(z) = z - f(z). If the power series resulting from this

procedure is integrated with respect to cfﬁ, expression (15),

(D@02 \ (dy/d)? N (di\TTHFI—k —p = ks g+ 1;(d, /d)?)
(Sp1) = (p+a-1)/2 - :
(—1)trta (q—l—l 2 P(k+1)T(p+k+1)
00 yPta+Zk—l o (oogh [( ¢Syl p+geven
/U dy sinh (7y) {smh[ ) I+ p-+godd (1
(k4 DI(p+k+ D0(g + 1)(d, /d,)*"
Fl—k,—p—kiqg+1;(d,/d, :
[k =p ¢+ 1;(d,/d.)’] ZF(A n+DT(p+k—n+ DT (g+n+1)T{n+1) (12)
00y _ o~ D(2k + DF [k, —k; 1:(d,/d)?) ( d \ 7 . .
(S6) k; IR o) (C[2h.eli/2m] + Cl2k 1 = & /20
—ln[sin(cj?/2)] + h(d,, d,) (15)
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which is shown at the bottom of this page, is obtained. In this
expression, h(d,,d,) is the integration constant, which does
not need to be calculated because it cancels out when SO’J i
computed. It should be noticed that the general expresswns
presented in this section for the computation of S/ reduces
to the more simple expressions appearing in [15] when the
case ¢ = 7 is considered (basis and testing functions on the
same strip).

The power series in this section provide extreme accuracy
when just a few terms are retained. In some particular cases
(which correspond to rather theoretical than practical situa-
tions, such as extremely high coupling levels or very close
proximity of the strips to the side walls) more terms need to
be considered. Anyway, the Shanks transformation [17, pp.
369-374] provides a useful tool to accelerate the power series
in such a way that the technique is even useful in these critical
cases.

IV. SpaTIAL DOMAIN COMPUTATION OF THE TAILS

The second technique considered for the computation of
(7) is based on the quasi-analytical integration of the spatial
counterpart of the series S;). By applying Parseval and
convolution theorems, we can write (16), which is shown at the
bottom of this page, with Gg,(z,2’) being the spatial domain
Green’s function whose Fourier transform is éas(oz), that is:

1 sin [%ﬂw - x'l]

- In a7n
2me sin [;—a(az + 77')]

Gas(z,2') =

Note that G,, may be physically interpreted as the Green’s
function of the “‘asymptotic structure™ which resuits by pro-
longing the Mth layer to y = —o0 and the (M + 1)th layer
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behavior when =z + z' — 0 or  + 2’ — 2a. In order to
overcome these computational drawbacks, the singular and
quasi-singular contributions of G, (z,z’) must be extracted
out and conveniently treated. The three terms causing the
numerical problems can be joined to give the following
“singular part” of Gu.(z,'):
|z — ']

—1In .
2re | (z+2') (20 —z — )
It should be noticed that from a physical point of view,
S(z,z") accounts for the contributions of the real charge line
and the first two image lines reflected by the conducting walls.
The convolution integrals shown in (16) at the bottom of
the page, can be very efficiently evaluated by splitting the
kemnel into two parts: Gos(z,2') = S(z,2') 4+ [Gas(z,2") —
S(z,x')]. The second term in this expression is a very smooth
function. Therefore, its contribution to the convolution is
obtained with a low order Chebyshev quadrature. On the other
hand, the convolution involving S(x,z’) has been analytically

evaluated. Let us define I7;[q: z]:
z' — ;
T(Z2—24
q( w, /2 )

s,+w, /2 )
I¥,la; «] =/ d! ——
(2%} 5)—w,/2 Wy 1:/ — s, 2
1-—-
( w;/2 )

S(a, o) = (18)

In |z — 2| ifvr=20
In(z+ ) ifr=-1 19)
In(2a—xz—2z') ifv=+1

s, —w,/2 <7 <8 +w/2

If complex plane integration techniques are used. the closed
form expressions shown in (20) at the bottom of this page are

oy = +oo. . ~ obtained for (19), where
The square root in the denominator of the integrands in N
(16) makes these integrals specially suitable to be computed by t7 () = S
means of the Gauss—Chebyshev quadrature formula. However, w;/2 "
the direct application of this quadrature to the computation si— < < syt
of the convolution integrals is not efficient enough because 2 ” 2_ 0
of the logarithmic singularity of Gus(z,z’) in ¢ = 2’ , S ff’/ - )
In addition, if the strips #1 and/or #N are very close to 8, = 2_31 lf’/ - —1
the lateral electric walls, Gys(x,z') exhibits a quasi-singular a—s; Hrv=+
(52) (%2)
si4w, /2 2 U s,+w, /2 2 q 2
25273 =/ dz 2 wz/2 / dz’ —— w]/ Gas(.T..'El) (16)
a 5w /2 Wi z— s\ Jo—w/2 T 1 (-7/'/_8]-)
1— . -
( W, /2 > w, /2
— 21t () — s (2 () (@) — (-1 if g2 1
IY gy 2] = q 20)

tn [ 24 (1t o) + 5 e 1)

ifg=0
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and sgn(-) is the sign function. For the particular case ¢ =
jiv = 0:

1, 0. .
ﬁﬂ%ﬂZ{_~Ea” o=l @n

ln(w,/4) if¢g=0
The next step for the computation of (16) is to carry out the

inner products. Only the part involving I 3, has been found to
have a closed form:

T <.’L’ - sl>
s, +w, /2 p\
/ d:v—z— /2 I°

3]
G—w /2 W, 5— 5\
L= ( w, /2 )
—-1/2p ifp=q#0
=<0 if p#q (22)
In(w,/4) fp=g=0

The rest of the inner products have been numerically eval-
uated by low order Gauss-Chebyshev quadratures.

In most cases. the number of points employed in both
convolution and inner product quadratures has been two or
three more than the number of basis functions used on each
strip. This is sufficient to ensure more than eight significant
figures in the calculations. Nevertheless, the computer program
which implements this technique makes it possible to introduce
a larger number of quadrature points for the inner product
integrals involving 171, I3y, and I?,,, (i = 1.--- N — 1).
This possibility can be useful because these inner products
require a few more quadrature points in the critical cases
mentioned at the end of Section III (if similar accuracy is
required for all the inner products).

V. NUMERICAL RESULTS

Two double precision FORTRAN codes have been written
to implement the techniques discussed above. Exhaustive
numerical work has been carried out to validate the computer
codes on both a PC/386 computer (with math coprocessor)
and a VAX/6410. This work has been useful to establish
the parameters which have an influence on the accuracy and
efficiency of the two alternative methods proposed in this
paper.

Firstly, we have checked the convergence of the series (11)
and (15). The convergence of (S77)" has been found to be
mainly affected by the ratios 7’;; = w, + w,;/2(s; + s,) and
7, = w, + w,/2(s, — s,). In most practical situations, the
convergence is reached in few terms. Nevertheless, the con-
vergence becomes slower when rj; and/for 7, are very close
to one (unity). This occurs if some strip is very close to the
lateral metallic walls (7'1*] ~ 1) and/or if very tightly coupled
strips are present (r;; & 1). In these cases, more terms must be
retained to add up the corresponding series. In Table T we show
a typical convergence pattern for the series 53{ associated to
a pair of asymmetrical strips for different coupling levels. The
number of terms required in the computation of .5”8:12 increases
when 7, approaches to unit. For this study five significant

correct figures are always imposed in the computation of C7 1.

TABLE [
MaxiMUM NUMBER OF TERMS A .« OF THE SERIES S'SIJ .g=1.2
TO BE RETAINED FOR FIVE SIGNIFICANT FIGURES ACCURACY IN THE
CAPACITANCE. THE ASTERISKED COLUMN INCLUDES THE RESULTS
OBTAINED BY USING THE TWICE ITERATED SHANKS TRANSFORMATION
Data « =100y = 1.0y =2 0wy = 1oy = 2.51 = 3).

[ a g

l':mfll'

~ | 01 | ¢02 | 02 0,21

Ay '58,1 Soz | Yo | (o)1)
20010437 0 0 1 -
1.00 | 0.60 | 1 1 4 3
0.50 | 0.75 ] 1 2 8 b}
0.1010.94 | 2 2 35 16
0.051097} 3 3 79 36
0.01 1099 3 3 229 94

Note that the use of the twice iterated Shanks transformation
(asterisked column) introduces a significant acceleration (over
50%) in the convergence of this series. It must be emphasized
that the cases involving a very large k. are not realistic.
Anyway, the direct summation of the original Fourier series
would require much more computational effort (prohibitive if
very high accuracy is desired). Therefore the application of
this technique is always preferable to direct summation.

The spatial domain technique presents similar difficulties
in the same cases, but it has been found to be less sensitive
to those problems. In general, the convolution integral and
the inner products are very accurately computed by using
a number of quadrature points equal to or slightly larger
than the number of basis functions employed on each strip.
Typical computations are so accurate that more than eight
meaningful digits can be obtained for the coefficients of
the expansion of the charge distribution. However, when

+

7,5 and/or 77 take (theoretical rather than practical) values

very close to 1. the number of quadrature points Ny used
for the computation of the critical inner products involving
I[%,IAJC}N andfor 7,y (i =1.....N — 1) must be increased
to keep the accuracy pattern. In Table II, we display the values

of N/ needed to get both five and ten significant figures
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TABLE 11
NuMBER OF GAUSS— CHEBYSHEV QUADRATURE POINTS N7 USED IN THE
CriTiCAL INNER PRODUCT INVOLVING IV , TO GET BOTH FIVE AND TEN
SIGNIFICANT FIGURES CAPACITANCES. (DATA: EQUAL TO THOSE IN TABLE I).

:
A | ryy | Ny (5 digits) | Ny (10 digits)
2.00 | 0.43 2 4
1.00 | 0.60 2 3
0.50 | 0.75 3 7
0.10 | 0.941 5 13
0.05 ] 0.97 7 20
0.01 | 0.99 11 35

of Cy,1 for different coupling levels. In that example, the
convolution integrals and the non-critical inner products have
been computed with 4 Gauss—Chebyshev quadrature points.

The aspects discussed in the previous paragraphs deal with
the quality of the computations of the Galerkin matrix entries.
However, the accuracy of the capacitance and inductance
coefficients also depends on the number of basis functions.
The trial functions in (3) are very suitable for the multistrip
problem, since extreme accuracy for both capacitance coeffi-
cients and charge distribution can be achieved in all practical
situations. Typical results obtained with our programs (both
programs provide exactly the same results within the computer
accuracy) can be seen in Tables III and IV. From Table III,
it can be seen that more trial functions are required when
the strips are very close or when they are adjacent to thin
dielectric layers (the strips are in this case relatively wide in
comparison with the thicknesses of the layers). Anyway, from
a practical point of view, no more than three or four basis
functions are necessary to obtain useful highly accurate results.
Table IV shows an example of the expansion coefficients
obtained for the charge distribution when different number of
basis functions are used. The coefficients of the expansion are
not sensitive to the addition of new terms when convergence
has been achieved (this fact suggests that (2, 3) is a quasi-
orthogonal expansion). As it is expected from the stationary
nature of the first coefficient, this is much more accurately
computed than the charge distribution.

In our opinion, an important feature of the methods reported
in this paper is that when they are used, no numerical problems
arise if the number of basis functions is increased. In the past,
the authors have used other asymptotic tails—involving large
argument approximation of the Bessel functions—to accelerate
the convergence of the spectral series [18]. For most practical
purposes, that approach works properly (although more slowly
than those presented in the present paper), but some problems
can be observed when a relatively large number of basis
functions are used. This is a consequence of cumulative
numerical errors when series involving large order Bessel
functions need to be computed. This drawback has not been
detected with the methods developed in the present work.

The numerical data generated with our programs have been
compared with highly accurate data (or exact solutions) re-

265

TABLE 11
CONVERGENCE OF THE CAPACITANCE MATRIX (NORMALIZED
TO €¢o) VERSUS THE NUMBER OF BASIS FUNCTIONS (Pmax )
DATA: €rp2 = 13, €yy2 = 10, €5 = €3 = 2.54.a = 20
mm, 51 = 9.45 mm, w1 = 1 mm, we = 1.5 mm, CAsE I
(h1 = 0,hy = 0.635 mm, hy = 0.hy = 10 mm), Case II (h; = 0.51

mm, hy = 0.125 mm, hy = 0.125 mm, hy = 9875 mm).
e
€,=€5 | h
I 4 ~0 l 4
es | !
w, 1Ay w h
— Wi = Wy | 3
- |
S —'1
1 €, I h
2 2
%
€,=€
1 0 ? 1
A =0.1lmm A= 1mm
Cases | Prar | Cii Ci2 Caz Cn Ciz Cx
1 28.7199 | -7.73533 | 37.1587 | 27.1524 | -1.22612 | 35.1310
2 30.8053 | -9.00472 | 39.1877 | 27.1841 | -1.22926 | 35.1583
3 31.3147 | -9.04270 | 39.4832 | 27.2127 | -1.19820 | 35.2954
4 31.4238 | -9.11756 | 39.5505 | 27.2132 | -1.19824 | 35.2955
5 31.4439 1 -9.13304 | 39.5639 | 27.2132 | -1.19829 | 35.2956
1 i} 314479 | -9.13600 | 39.5663 | 27.2132 | -1.19829 | 35.2956
7 31.4488 { -9.13669 | 39.5663 - - -
8 31.4490 | -9.13687 | 39.5671
9 31.4491 | -9 13692 | 39.5671
10 31.4491 [ -9.13694 | 39 5671
11 31.4491 § -9.13694 } 39.5671 - - -
1 8.70529 | -4.73082 | 10.1254 | 6.87581 | -1 74542 | 7.99884
2 119197 | -7 53461 | 13.0869 | 7.06826 | -1.83526 | 8.14886
3 13.5927 | -9.20794 | 14.7678 | 7.18892 | -1.94238 | 8.28897
4 13.9190 | -9.49782 { 15.0354 | 7.19602 | -1.94558 | 8.29218
1 5 13.9838 | -9.56780 | 15.1115 | 7.19838 | -1.9489G | 8.29925
6 13.9914 [ -9.57426 | 15.1170 | 7.19849 | -1.94900 | 8.29927
7 13.9920 | -9.57489 | 15.1177 | 7 19850 | -1.94901 | 8.29928
8 13.9920 | -9.57491 | 15.1177 | 7.19850 | -1.94901 | 8.29928
9 13.9920 | -9 57491 | 15.1177 - - -

ported in the literature for particular structures. The agreement
has been always found to be excellent (all the significant
figures reported have been invariably obtained). For example,
numerical data for the capacitance coefficients of a five strips
striplike configuration in homogeneous medium are reported in
[[8], Table VII] and [[71. Fig. 6]. The former uses an enhanced
integral equation technique and extrapolation procedures and
the latter gives a conformal mapping solution (although numer-
ical computation of the hiperelliptic functions is required). Five
figures are correctly given in [8] and six figures are given in
[7] for the normalized capacitance coefficients. Our programs
reproduce all the significant figures reported in those works.
To obtain five figures accuracy, 4 basis functions have been
retained on each strip, and the CPU time was about 1.5 seconds
on a PC/386 computer (about 0.15 seconds on a VAX/6410).
Six figures were obtained with 5 basis' functions (2.2 seconds
on a PC/386 computer, about 0.2 seconds on a VAX/6410).
These CPU times refer to the spatial domain technique. The
same results were obtained by means of the other technique
described in this paper with slightly higher CPU times. As
a final example, in Table V we compare our results with
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TABLE 1V
CHARGE DISTRIBUTION COEFFICIENTS OF A PAIR OF ASYMMETRICAL COUPLED
STRIPS FOR DIFFERENT VALUES OF THE NUMBER OF BAsis FUNCTIONS
(ma~- DATA: EQUAL TO THOSE IN TaBLE I, CASE L. A = 1 mm.

Excit. (1,0) Excit. (0,1)

Jmaz | 4 g1 Qg2 Qg1 Qg2
1 1| 27.1524 | -1.22612 | -1.22612 | 35.1310
2 1| 27.1841 | -1.22926 | -1.22926 | 35.1583
2 | 0.09538 | 1.70030 | -1.51918 | -0.11748

3 1] 27.2127 | -1.19820 | -1.19820 | 35.2954
2| 0.10092 | 1.68933 | -1.48469 | -0.11830
31-1.95733 | -0.82322 | -0.55950 | -4.65142

4 1 27.2132 | -1.19824 | -1.19824 | 35.2955
21 0.10152 ] 1.68674 | -1.48439 | -0.11827
31-1.95706 | -0.82325 | -0.55952 | -4.65132

41 0.01094 | 0.31610 | -0.15337 | -0.02298

5 1| 27.2132 | -1,19829 | -1.19829 | 35.2956
2| 0.10156 | 1.68675 | -1.48446 | -0.11828

3 [-1.95705 | -0.82309 | -0.55955 | -4.65161

41 0.01094 | 0.31610 | -0.15338 | -0.02298

5 0.04654 | -0.09211 | -0.03038 | 0.16107

6 11 27.2132 | -1.19829 | -1.19829 | 35.2956
2| 0.10156 | 1.68676 | -1.48446 | -0.11829

3| -1.95705 | -0.82309 | -0.55955 | -4.65161

4 1 0.01094 | 0.31609 | -0.15338 | -0.02298

51 0.04654 | -0.09211 | -0.03038 | 0.16107

6 | 0.00033 | 0.02020 | -0.00439 | -0.00150

those obtained by the method of lines (with nonequidistant
discretization) in [5] for a five conductor microstrip structure
with different widths and inhomogeneous substrate. To obtain
4 digits accuracy we have used 5 basis functions, and the
CPU time was less than 1.5 seconds (PC/386). A fraction of a
second was necessary to get the same level of accuracy of the
example in [5]. In general, very reliable and accurate results
can be obtained for the capacitance and inductance matrices of
microstrip structures on a PC/386 computer with CPU times
ranging from a fraction of a second to two or three seconds
(depending on the number of strips and basis functions). The
surface charge distributions are also provided with very good
accuracy.

V1. CONCLUSIONS

In the present work, a numerically improved spectral domain
approach is employed for the efficient and accurate quasi-
TEM analysis of a wide class of multistrip transmission
lines. A proper analytical preprocessing is incorporated in
the computation of the entries of the Galerkin equations
system in order to achieve extreme accuracy in a short CPU
time. To reach this goal, two different techniques have been
proposed and compared. The double precision FORTRAN
programs implementing these techniques are able to analyze
multistrip configurations embedded in multilayered substrates
on a PC/386 computer in less than a few seconds. Total
agreement has been found with exact results (up to the
accuracy reported in the literature) for simple particular config-

TABLE V
COMPARISON BETWEEN OUR RESULTS AND THOSE REPORTED IN [5] FOR
THE CAPACITANCE MATRIX (NORMALIZED TO €3 ) OF A FIVE-

CONDUCTOR MICROSTRIP CONFIGURATION. DATA: i = (.8 mm,
e =256, w1 = 0.16 mm, wy = 0.47 mm .\ = 0 07 mm. ¢ = 3.7 mm.
€

o W e Wonlo]f Wyl eWo o Wy e

+ b ‘[

A € h

: a ]

C.;/co Diestel [5] | This work
C11/(0 = C55/€0 4633 4642
Canfco = Catfco | 7.857 7.871
033/60 5.723 5.738
012/60 = C’45/C0 -2.547 -2.555
C23/(0 = C34/(() -2.338 -2.346
Cls/(o = Cgs/(g -0.080 -0.080
Ca/ o -0.553 -0.553
CM/(Q = 025/60 -0.064 -0.064
Cis/co -0.013 -0.013

urations. Good agreement has been also found with many other
results reported for more general structures. The surface charge
distribution can be obtained with accuracy and reliability if
this quantity is required.
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